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Introduction 
cembra was designed in order to make inferences about the effect of categorical or continuous 

variables on outcrossing rates. The statistical procedures are based on a logistic regression analysis, 

where a (normally known) binomial response variable is substituted with an unknown outcrossing 

rate. The estimation is conducted within a Bayesian framework, using the Markov Chain Monte Carlo 

approach. The details of the model are described in Chybicki and Dzialuk (2014). In addition, the 

program offers the routine for estimation of outcrossing and effective selfing rates, with the latter 

representing the parameter useful for quantification of biparental inbreeding (Chybicki, submitted). 

This manual attempts to give the information necessary to use the software. However, in case of 

question, please contact the author at the e-mail: igorchy@ukw.edu.pl. 

mailto:igorchy@ukw.edu.pl
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Preparing data 
Important! The software assumes by default that progeny genotypes are fully compatible with 

maternal genotypes provided in the data file. Eventual incompatibilities will result in the crush as 

quickly as the program starts to analyze data. In order to relax the compatibility assumption, see 

‘Software limitation’ section. 

Generally, data must be provided in a tab- or space-delimited text file. Except for continuous 

variables, all the values must be integers. The values of continuous variables are assumed to be real 

numbers, with '.' used as the decimal separator. 

In the data file, there are 4 integer numbers in the first row: the number of progeny groups (G), the 

number of loci (L), the number of nominal predictors (N), the number of continuous predictors (C) of 

outcrossing or effective selfing rates. In the second and next rows, a list of N + C variable names 

follow. There must be no empty line(s) between the first (i.e. G L N C) and the second row (i.e. the 

name of the first variable), so be careful! Then, G blocks follow, each representing a single group of 

progeny. In the example below, there are 2 progeny groups (families), individuals are genotyped at 3 

loci, there are 2 nominal predictors and 1 continuous predictor: 

 
2 3 2 1   

Nominal_var1 

Nominal_var2 

Continuous_var1 

   

1 2 40.5    

200 200 149 149 342 342 

3      

198 200 149 149 342 342 

200 200 149 149 342 350 

200 202 -1 -1 342 348 

      

2 1 53    

164 200 147 149 342 376 

4      

188 200 147 149 374 376 

164 164 147 149 342 342 

164 200 147 147 342 376 

164 200 149 149 342 342 

 

Each progeny block starts with the header row, where (N + C) values, for the declared nominal and 

continuous predictors (in that order!), are given. Then, in the next line, a maternal genotype is given. 

In the third line, a single integer N is given, equal to the number of progeny in the block. Then, N 

rows follow, each containing the genotype of a single progeny individual. Missing genotypes (both 

alleles are assumed to be missing!) are coded with double ‘-1’. 

Note that a single family can be splitted appropriately into several blocks, according to the grouping 

variable (either nominal or continuous). For example, if one collected seeds from a given plant in two 

(or more) sampling seasons, then two (or more) progeny blocks would represent different seasons. 
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However, one must remember that maternal genotype must be provided separately for each block, 

even if repeated across different blocks. 

Note that a scale in which continuous variables are expressed will determine the value of the slope 

coefficient. If one wants to compare the effect sizes among continuous variables, then the z-

standardized values must be provided (e.g. Schielzeth 2010). However, in this case the slopes may be 

more difficult to interpret in terms of the impact of a change in a variable (in measurement units) on 

the outcrossing/selfing odds. 

Data import 
Data formatted in the way described above can be imported using the ‘File|Open’ command in the 

main menu. Once data are successfully imported, the basic information is shown in the screen.  

If categorical variables are provided, the software performs the chi-squared test for associations 

between variables (categories). Generally, in a regression analysis, predictors must be uncorrelated. 

Thus, the results of the test may help in determining which, if any, variables are associated and, in 

consequence, may be redundant in the analysis. Normally, assuming the maximum likelihood 

estimation, including redundant variables will result in different results, depending on the order of 

variables. However, in the case of Bayesian approach used here, both (or more) redundant variables 

may be not significant, even if each single variable is significantly associated with outcrossing rates. 

However, the last property depends strongly on the length of the Markov chain. If too short chains 

are used, the results may suggest that the slopes for correlated variables behave normally, leading to 

false significant estimates. Therefore it is recommended to use long chains, following the suggestions 

below. 

Note that the software offers no function to test whether continuous variables reveal associations. In 

that case, the user must perform the appropriate correlation analysis in advance, using the external 

software. Note that associations may exist even between nominal and continuous variables. In this 

case, there is no proper correlation measure to be used. However, ANOVA can be helpful in this case, 

given that continuous variables are normally distributed. 

Data export 
The imported data can be exported to different file formats, incl. MLTR (Ritland 2002), MSF (Chybicki 

2013), POLDISP (Robledo-Arnuncio et al. 2007) and SpaGeDi (Hardy and Vekemans 2002).  

[to complete] 

The ‘Settings’ window 
The 'Analysis|Settings' menu command allows to set-up the analysis. The user can choose between 

single- and multi-locus outcrossing model. Once multi-locus model is chosen, the user can choose to 

include biparental inbreeding (effective selfing) or not. Also, the user can choose between the 

regression-based and the over-dispersion model for outcrossing and/or effective selfing rates. The 

latter is described in a separate section below. Furthermore, the length of MCMC run ('number of 

samples', NS), the length of burn-in ('Number of disregarded samples', NB) and thinning can be set 
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(NT). Those values should be chosen carefully, because they determine the quality of the estimates. 

As generally known, NS should be large enough in order to satisfy convergence of the Markov chain. 

The default value of 100 000 should be good enough for the rough estimation of the parameters. 

However, 1000 000 samples should be used in most cases, if one wants to provide highly repeatable 

estimates. The value of NB does not need to be very high, because the Markov chain resulting from 

the algorithm tends to mix quite quickly. As a rule of thumb I would suggest to set NB to be no more 

than 10% of NS, which is likely much more than required in most cases. Recently, thinning was shown 

to be unnecessary in most cases (Link and Eaton 2010). However, thinning is still helpful in managing 

very long chains, especially in the context of the required storage capacity. In order to keep a 

reasonable size of the output file, I suggest to set NT to a value to get no more than 20 000 stored 

samples, i.e. NS/NT < 20 000. On the other hand, NS/NT should be also not less than 1000; otherwise 

the sample from the posterior distribution may be too small to compute precisely the quantiles. 

Note that the software does not check if NS > NB or NS > NT. Please assure that those conditions are 

met! 

If the regression-based model is chosen, further settings are available, including the coding system 

(for nominal variables), the reference levels (for nominal variables) and the variance of the prior 

distribution for scale coefficients (10 is a default value). Note that coding system changes the 

interpretation of slope coefficients, having no effect on the overall fit and model quality. The 

difference between coding systems is explained in more detail in a separate section below. 

The variance of the prior distribution for slope coefficients is used to determine the shape of the 

prior distribution. The default value should be okay for most cases. However, the user may want to 

experiment a bit (probably by increasing the value), in order to determine if this value changes the 

results. Generally, the larger variance the less informative prior. 

Using ‘Include/exclude effects’ list, the user can choose which, if any, factors are included in the 

model. If no variable is selected, the resulting model will contain the constant term only (the null 

model). 

If the over-dispersion model is chosen, the user can choose between ‘the beta-binomial model for 

overdispersion’ or the null model. 

To confirm all the options, one clicks the ‘OK’ button. Note that the settings cannot be changed 

during the analysis. 

Performing the analysis 
To run the analysis, the ‘Analysis|Run’ command is used. Usually, a single run takes from several 

minutes to several hours, depending on data and the length of the Markov chain. During the analysis, 

the software shows the approximate time left to the end. The analysis can be cancelled using the 

‘Analysis|Cancel’ command. However, the results will not be shown. During the analysis, the samples 

(taken from the posterior distribution) are written automatically to the output file ‘mcmc.out’ 

created in the same directory as the input file. Also, at the end of the run, the second output file is 

created, ‘ind_t.txt’, containing the individual outcrossing rates. These values are in fact the individual 
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posterior probabilities (i.e. estimated separately for every progeny individual), that a given progeny 

was a result of outcrossing. 

Note that both ‘mcmc.out. and ‘ind_t.txt’ files are over-written automatically (without prompting!) 

during every new run. Therefore, if one wants to keep those files, I suggest to re-name them or move 

them into another directory. 

Note that the output files are tab-delimited (with ‘.’ as the decimal separator) and can be easily 

copy/pasted into a spreadsheet software (e.g. Excel) or imported into any statistical package (e.g. R). 

Immediately after the end of run, the results are shown in the screen. See the next section for the 

interpretation of the results.  

Interpreting the results 
Once the analysis is completed, the results are shown in the screen in a form of tab-delimited text 

(copy/paste into a spreadsheet may be helpful in order to interpret the results). First, the 

information is shown whether multi- or single-locus outcrossing model was used. Then, if the 

regression model is used, detailed information is given, which variables were included (1) or excluded 

(0) and which levels (nominal variables only) were used as a reference in the analysis. Also, the 

coding system is specified. Then, the information about the log-likelihood of the model for posterior 

averages, the average and variance of the log-likelihood across MCMC is given. It is followed by DIC-

related indices: DBar – the average deviance, DHat – the deviance for the posterior averages, pD – 

the effective number of parameters and DIC – the deviance information criterion. Finally, the 

information about the value of the variance of prior distribution for slope coefficients is shown. The 

interpretation of DIC is briefly discussed in a separate paragraph below. 

The final estimates of the parameters are shown in a separate table entitled ‘Summary of posterior 

marginal distributions’. Here, posterior mode, mean and some quantiles are given, including 2.5%, 

5%, 25%, 50%, 75%, 95% and 97.5% quantile of the posterior distribution. Note that 50% quantile 

corresponds to median. Also, 2.5% and 97.5% quantiles can be used as limits of 95% (equal tails) 

credible interval. Also, the limits of 95% highest posterior density interval are shown, i.e. HPDl(95%) 

and HPDh(95%). If the regression model is used, alpha (constant term), beta (slopes for nominal 

variables) and gamma (slopes for continuous variables) parameters of the regression function are 

shown together with the estimated individual outcrossing rates for family groups. If the over-

dispersion model is used, the table shows the estimates for the hyper-parameters of the beta-

binomial model (mt, yt, me and my) together with individual outcrossing rates for family groups. The 

hyper-parameter mt and yt (me and ye) is the mean and dispersion of the beta prior. The former may 

be referred to as the population mean outcrossing rate (me is the population mean effective selfing 

rate). The latter is used to measure over-dispersion. Details are described in the section below. 

Finally, the table with the estimated pollen allele frequencies is shown. However, although these 

estimates are fully Bayesian, posterior averages are only extracted. 

Using DIC 

DBar is a measure of model fit (or unfit). For any two model with the same (effective) number of 

parameters, one with the smaller DBar fits better to data. Generally, the more parameters in the 
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model, the better fit. So, in order to account for over-parameterization, one needs to penalize for the 

number of parameters. This is done using DIC, which is computed as DIC = DBar + pD (model fit 

penalized by the number of parameters). Here the analogy to the Akaike Information Criterion (AIC) 

is clearly seen. The effective number of parameters, pD, can be interpreted as a number of 

parameters in the model unconstrained by the prior distribution. 

Because DIC is a large sample Bayesian analog of AIC, in order to compare any two model one may 

follow the rules for AIC. After Burnham and Anderson (2002), if the DIC difference between the i-th 

model and the best model (with the lowest DIC) is between 0-2, the i-th model still has a substantial 

support, between 4-7 considerably less support and >10 essentially no support. When two 

competing models have a substantial support, according to maximum parsimony approach, I would 

prefer that with the lower pD. 

Note that, although potentially informative about model weights, DIC was not proved as a proper 

means for Bayesian model averaging. Also, in order to assure stable DIC, the Markov Chain needs to 

converge. In most cases, the default number of samples (100 000) is not enough. See the ‘The 

‘Settings’ window’ section above. 

The difference between coding systems used for nominal variables 
To perform a regression analysis for nominal predictors, the software allows to choose between two 

coding systems: Deviation from means and Reference cell. First let us clarify terminology used in this 

section. A nominal predictor is assumed to have K levels. For example, seeds may be grouped 

according to population size, when 3 types are distinguished (small, moderate, large). In this case, a 

population size represents a single nominal predictor with 3 levels. Generally, i.e. regardless the 

coding system, K - 1 code (design) variables are generated for K levels. In consequence, K - 1 

unredundant slope coefficients are required to map the association between a nominal variable and 

a response variable. Thus, if more nominal explanatory variables are provided, for every predictor  

(K – 1) slope coefficients are required. 

 
Specification of the code variables for a nominal predictor and the corresponding regression function 
terms. 

Coding system Level Code variables Regression function term 

 
 

𝑥1 𝑥2 
 

     

Deviation from means 

 1 1 0 𝛽1𝑥1 + 𝛽2𝑥2 = 𝛽1 

 2 0 1 𝛽1𝑥1 + 𝛽2𝑥2 = 𝛽2 

 3 -1 -1 𝛽1𝑥1 + 𝛽2𝑥2 = −(𝛽1 + 𝛽2) 

     

Reference cel (here level 3) 

 1 1 0 𝛽1𝑥1 + 𝛽2𝑥2 = 𝛽1 

 2 0 1 𝛽1𝑥1 + 𝛽2𝑥2 = 𝛽2 

 3 0 0 𝛽1𝑥1 + 𝛽2𝑥2 = 0 
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Two coding systems are shown in the table above. One may see that using Deviation from means for 

a variable with K levels results in K regression terms, of which K – 1 are actually estimable slope 

coefficients, while the remaining one is always a negative sum of these K – 1 coefficients. However, it 

does not matter, which level is chosen to be ‘reference’ in this case. In the example shown in the 

table, the values will remain unchanged if, instead of the third level, the first one is chosen. 

In the case of Reference cell coding (or Dummy coding), one needs to choose the reference level 

(level 3 in the table), to which all the other levels will be compared. Sometimes, especially in the case 

of K = 2, it may be natural to think of one level as to be the ‘reference’. For example, if one wants to 

test for the effect of experimental stimulation of flowering on outcrossing, two groups of progeny 

can be distinguished (stimulated vs. control). In this case the control group may be a natural 

reference level. However, such a natural classification is not possible sometimes. Then, Deviation 

from means may be preferred. 

Basically, the difference between the two coding systems is in the interpretation of resulting slope 

coefficients. In the case of Deviation from means, the slopes represent the difference in 

outcrossing/selfing odds between a particular level and a geometric mean of odds for a nominal 

variable (i.e. across all the levels). In this case, the value of zero is meaningful in respect to the overall 

insignificance of a particular level. In the case of Reference cell, the slopes represent the odds ratio 

for a given level to the reference level. In other words, the slopes inform how the outcrossing/selfing 

odds change in a given level as compared with the reference level. In this case, the value of zero 

informs that there is no difference between a given level and the reference level. 

Note that, unlike Deviation from means, in the case of Reference cell coding, changing a reference 

level leads generally to different estimates (and interpretation) of the slope coefficients. 

Nonetheless, the overall model fit remains unchanged. 

The over-dispersion model for mating system parameters 
The software can be also used to verified whether the outcrossing and effective selfing rates for 

individual progeny groups values reveal any extra variability over that expected for a binomial 

distribution. In other words it allows to verified whether there is any over-dispersion in the individual 

outcrossing rates, ignoring however the impact of provided variables, if any. The significant deviation 

from a binomial distribution would imply that there was a significant factor behind the variation in 

individual outcrossing rates, including such features as the location (population), variable pollen 

availability or a variable number of lethal alleles. 

The approach is generally based on the (mixed mating) probability model (Chybicki, submitted), 

similar to that used in MLTR (Ritland 2002), in which the probability of the multilocus genotype 𝑂𝑖𝑗  of 

the 𝑗-th offspring in the 𝑖-th maternal family is equal 

Pr(𝑂𝑖𝑗) = (1 − 𝑡𝑖)∏ Pr(𝑂𝑖𝑗𝑙|𝑀𝑖𝑙)
𝐿
𝑙 + 𝑡𝑖 ∏ (𝑒𝑖Pr(𝑂𝑖𝑗𝑙|𝑀𝑖𝑙) + (1 − 𝑒𝑖)Pr(𝑂𝑖𝑗𝑙|𝑀𝑖𝑙 , 𝐏𝑙)

𝐿
𝑙 ), [1] 

where 𝑡𝑖 is the probability that a seed collected from the 𝑖-th mother plant was produced through 

outcrossing, 𝑒𝑖 is the probability that a seed collected from the 𝑖-th mother was produced through 

outcross mating between relatives, Pr(𝑂𝑖𝑗𝑙|𝑀𝑖𝑙) is the Mendelian probability of the offspring 

genotype after self-fertilization given the maternal genotype 𝑀𝑖𝑙  at the 𝑙-th locus, while 
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Pr(𝑂𝑖𝑗𝑙|𝑀𝑖𝑙 , 𝐏𝑙) is the Mendelian probability of the offspring genotype after outcrossing given the 

maternal genotype 𝑀𝑖𝑙  and the background pollen pool 𝐏𝑙 (represented by the array of allele 

frequencies) at the 𝑙-th locus. The likelihood function of the model is  

𝐿(𝐎; 𝐭, 𝐏) = ∏ ∏ Pr(𝑂𝑖𝑗)𝑗𝑖 . [2] 

In order to estimate over-dispersion, 𝑡𝑖 and 𝑒𝑖 are assumed to follow a beta distribution: 

𝑓(𝑡; 𝛼, 𝛽) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝜃𝛼−1(1 − 𝜃)𝛽−1, [3] 

where 𝛼 and 𝛽 are the parameters such that the expected value equals 𝜇 =
𝛼

𝛼+𝛽
, while the variance 

equals 𝜎2 = 𝜇(1 − 𝜇)
1

1+𝛼+𝛽
, while 𝜃 refers to the parameter of the model (either 𝑡 or 𝑒). The far 

right-hand side term 
1

1+𝛼+𝛽
, sometimes called the dispersion parameter 𝛾, is relevant to study over-

dispersion. Therefore, the model uses a Beta distribution expressed in the equivalent form with 𝜇 

and 𝛾 parameters, using the following substitutions 𝛼 =
𝜇(1−𝛾)

𝛾
 and 𝛽 =

(1−𝜇)(1−𝛾)

𝛾
. The parameters 

𝜇 and 𝛾 take values within (0,1). In the case of 𝛾, the asymptotic 0 means that there is no over-

dispersion (e.g. the number of outcrossed progeny within families follows the binomial distribution 

with the same parameter), while asymptotic 1 means that there is the extreme over-dispersion (e.g. 

the number of outcrossed progeny within each family follows the binomial distribution with the 

unique parameter). Both parameters are set to be estimable along with the parameters of the 

likelihood function [2]. 

The parameters are estimated using the Gibbs sampler (a class of Markov Chain Monte Carlo or 

MCMC algorithm). A uniform Dirichlet distribution is taken as a prior for 𝐏𝑙 (i.e. the vector of allele 

frequencies at the 𝑙-th locus), while for outcrossing and effective selfing rates the beta distribution is 

taken with hyper-parameters 𝜇 and 𝛾. In the case of 𝜇 and 𝛾, the uniform and the (improper) 

distribution proportional to 1 / 𝛾 are used, respectively. The latter is chosen in order to express the 

conservative null hypothesis, that there is no over-dispersion in individual outcrossing rates (i.e. 𝛾 is 

close to 0).  Although there is a boundary issue (i.e. 𝛾 ∈ (0,1)), which precludes performing a formal 

test whether 𝛾 = 0, given the conservative prior taken for 𝛾, the Bayesian confidence interval can 

inform about significant over-dispersion. As a cross-validation for this procedure, one may performed 

the Bayesian model comparison to verify if the hierarchical (“over-dispersion”) model better fits to 

data than the null model. For this purpose, an additional analysis based on the null model must be 

performed. In this case, no extra variation in outcrossing rates is assumed (i.e. 𝛾 = 0). Conceptually, 

the estimation algorithm is the same, except for the parameterization of outcrossing and effective 

selfing rates. In this case a series of 𝑡𝑖 and/or 𝑒𝑖 is replaced with a single (mean) rate, for which a 

uniform beta distribution is taken as a prior. 

Using DIC, one may compare competing mating models, with differences defined in terms of 

effective selfing and outcrossing rates. For example, in order to see whether effective selfing 

(biparental inbreeding) contributes to the observed mating pattern, one may compare models with 

and without effective selfing. Note that single-locus outcrossing model is an equivalent of the multi-

locus mating model, in which there is no self-fertilization (t = 1). Hence, the single-locus outcrossing 

mode can be chosen to see whether any self-fertilization contributes to the observed mating pattern. 
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Software limitations 
There is no limit a priori for a number of families, individuals, loci etc. Also, there is no limit for a 

number of explanatory variables (predictors). However, having a very large sample one may 

experience increased analysis time. 

By default, there is no possibility for any genotypic incompatibility between progeny and a mother 

plant. However, if one can assume that scoring problems resemble K-Alleles Model (i.e. due to 

mutation or scoring mistake, an allele can be substituted with any other allele, drawn from K alleles 

in total at a given locus), then the average-over-loci rate of genotyping error (epsilon, taking values 

between 0 and 1) can be set using ‘Analysis|Set epsilon (…)’ command in the main menu. Note that 

the current setting is shown in brackets. If epsilon is set to nonzero value, incompatibility between 

progeny and mother plants is no longer an issue. Although the implemented procedure works fine in 

most cases, it is strongly recommended to use reasonable epsilon value, e.g. estimated 

experimentally through re-genotyping. 

Also, despite that incomplete maternal genotypes are allowed (i.e. with missing single-locus 

genotypes), the gaps are not reconstructed from progeny. Thus, generally it is not recommended to 

put many gaps in maternal genotypes, because data use may be suboptimal. If one has problems 

with providing maternal genotypes, it is recommended to analyze data with MLTR (Ritland 2002) or 

MSF (the other software developed by the author, which accounts simultaneously for typing errors 

and the presence of unrelated individuals in maternal families) in advance, in order to estimate 

maternal genotypes. Another limitation is that there is no option to choose different coding systems 

independently for each nominal variable. Also, there is no possibility for missing values in the case of 

predictor variables. However, in that case the user can substitute missing data with appropriate 

mean values. Some of these limitations will be relaxed in future versions. 
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